Dielectric Materials – Solved Problems

1. If an ionic crystal is subjected to an electric field of 1000 V/m and the resulting polarization is 4.3 × 10-8 cm², Calculate the relative permittivity of the crystal.

Given

E = 1000 V/m, ε0 =8.85×10-12 F/m, P = 4.3 × 10-8 C/m², εr = ?

Solution :-

\begin{aligned} P & =\varepsilon_{\mathrm{o}}\left(\varepsilon_{\mathrm{r}}-1\right) \mathrm{E} \\ \varepsilon_{\mathrm{r}} & =1+\frac{\mathrm{P}}{\varepsilon_{0} \mathrm{E}} \\ & =1+\frac{4.3 \times 10^{-8}}{\left(8.85 \times 10^{-12} \times 1000\right)} \\ \varepsilon_{\mathrm{r}} & =5.86 . \end{aligned}

2. A solid material contains 5 × 1028 atoms/m² each with a polarisability of 2 × 10-40 Fm². Calculate the ratio of internal field to the applied field.

Given

\mathrm{N}=5 \times 10^{28} \text { atoms } / \mathrm{m}^{3}, \alpha=2 \times 10^{-40} \mathrm{Fm}^{2}, \frac{\mathrm{E}_{\mathrm{i}}}{\mathrm{E}}=?

Solution :-

eqn. 1

\begin{aligned} E_{i} & =E+\frac{P}{3 \varepsilon_{0}} \\ P & =N \alpha E_{i} \\ & =5 \times 10^{28} \times 2 \times 10^{-40} \times E_{i} \\ P & =1 \times 10^{-11} \times E_{i} \end{aligned} eqn. 2

Substituting eqn. (2) in (1) we get,

\begin{aligned} \mathrm{E}_{\mathrm{i}} & =\mathrm{E}+\frac{1 \times 10^{-11} \times \mathrm{E}_{\mathrm{i}}}{3 \times 8.85 \times 10^{-12}} \\ & =\mathrm{E}_{\mathrm{i}}-\frac{1 \times 10^{-11} \times \mathrm{E}_{\mathrm{i}}}{3 \times 8.85 \times 10^{-12}} \\ & =\mathrm{E}_{\mathrm{i}}\left[1-\frac{1 \times 10^{-11}}{3 \times 8.85 \times 10^{-12}}\right] \\ & =\mathrm{E}_{\mathrm{i}}(0.62352) \\ \frac{\mathrm{E}_{\mathrm{i}}}{\mathrm{E}} & =\frac{1}{0.6235} \\ \frac{\mathrm{E}_{\mathrm{i}}}{\mathrm{E}} & =1.6038 \end{aligned}

3. Calculate the electronic polarizability of argon atom. Given ∈r = 1.0024 at NTP and N = 2.7 × 1025 atoms/m³.

Given

r = 1.0024, ∈o = 8.85 × 10-12 F/m, N=2.7 × 1025 atoms/m³, αe =?

Solution:-

\begin{aligned} \mathrm{P} & =\mathrm{N} \alpha_{\mathrm{e}} \mathrm{E} \\ \alpha_{\mathrm{e}} & =\frac{\mathrm{P}}{\mathrm{NE}} \\ \mathrm{P} & =\varepsilon_{\mathrm{o}}\left(\varepsilon_{\mathrm{r}}-1\right) \mathrm{E} \\ \alpha_{\mathrm{e}} & =\frac{\varepsilon_{\mathrm{o}}\left(\varepsilon_{\mathrm{r}}-1\right) \mathrm{E}}{\mathrm{NE}}=\frac{\varepsilon_{\mathrm{o}}\left(\varepsilon_{\mathrm{r}}-1\right)}{\mathrm{N}} \\ & =\frac{8.85 \times 10^{-12} \times(1.0024-1)}{2.7 \times 10^{25}} \\ \alpha_{\mathrm{e}} & =7.9 \times 10^{-40} \mathrm{Fm}^{2} \end{aligned}

4. The following data refers to a dielectric material. εr = 4.94 and n² = 2.69, where n is the index of refraction. Calculate the ratio between electron and ionic Polarizability for this material.

Given

ε4.94, n²=2.69, α=αei0 is negligibly small)

Solution :-

Clausius – Mossotti relation is

\begin{aligned} \frac{\varepsilon_{\mathrm{r}}-1}{\varepsilon_{\mathrm{r}}+2} & =\frac{N \alpha}{3 \varepsilon_{0}} \\ \frac{\varepsilon_{\mathrm{r}}-1}{\varepsilon_{\mathrm{r}}+2} & =\frac{N\left(\alpha_{\mathrm{e}}+\alpha_{\mathrm{i}}\right)}{3 \varepsilon_{0}} \\ \frac{4.94-1}{4.94+2} & =\frac{\mathrm{N}\left(\alpha_{\mathrm{e}}+\alpha_{\mathrm{i}}\right)}{3 \varepsilon_{0}} \\ \frac{\mathrm{N}\left(\alpha_{\mathrm{e}}+\alpha_{\mathrm{i}}\right)}{3 \varepsilon_{0}} & =0.5677 \end{aligned} eqn. 1

We know εr=n² and at optical frequencies αi = 0

Hence \begin{aligned} \frac{\mathrm{n}^{2}-1}{\mathrm{n}^{2}+2} & =\frac{\mathrm{N} \alpha_{\mathrm{e}}}{3 \varepsilon_{0}} \\ \frac{\mathrm{N} \alpha_{\mathrm{e}}}{3 \varepsilon_{0}} & =\frac{2.69-1}{2.69+2} \\ \frac{\mathrm{N} \alpha_{\mathrm{e}}}{3 \varepsilon_{0}} & =0.36034 \end{aligned} eqn. 2

Dividing equation (1) by equation (2)

\begin{aligned} \frac{N\left(\alpha_{e}+\alpha_{i}\right)}{N \alpha_{e}} & =\frac{0.5677}{0.36034} \\ 1+\alpha_{i} / \alpha_{e} & =1.575 \\ \alpha_{i} / \alpha_{e} & =0.575 \\ \alpha_{e} / \alpha_{i} & =1.738 \end{aligned}

5. A parallel plate condenser has a capacitance of 2μF. The dielectric has permittivity εr=100. For an applied voltage of 1000 V, find the energy stored in the condenser as well as the energy stored in polarizing the dielectric.

Given 

C = 2 × 10-6 F, V=103 V, ε= 100, W0 = ?

Solution :-

\begin{aligned} & \mathrm{E}=\frac{1}{2} \mathrm{CV}^{2} \\ & \mathrm{E}=\frac{2 \times 10^{-6} \times\left(10^{3}\right)^{2}}{2}=1 \text { joules } \end{aligned}

To calculate the energy stored in the dielectric material which is in between the parallel plates of the condenser, capacitance has to be calculated removing the dielectric material.

\mathrm{C}_{0}=\frac{\mathrm{C}}{\varepsilon_{\mathrm{r}}}=\frac{2 \times 10^{-6}}{100}=0.02 \mu \mathrm{F}

Energy stored without the dielectric

\mathrm{E}_{\mathrm{o}}=\frac{\mathrm{C}_{\mathrm{o}} \mathrm{V}^{2}}{2}=\frac{0.02 \times 10^{-6} \times 10^{6}}{2}=0.01 \text { joules }

Hence energy stored in the dielectric

\begin{aligned} & \mathrm{E}_{1}=\mathrm{E}-\mathrm{E}_{\mathrm{o}}=1-0.01 \\ & \mathrm{E}_{1}=0.99 \mathrm{Joule} \end{aligned}

6. Find the capacitance of layer of Al2O3 having thickness 0.5μm and area 2500 mm² with εr =8.

Given

εr =8, d=0.5 × 10-6 m, A = 2500 × 10-6 m², C =?

Solution:-

\begin{aligned} \mathrm{C} & =\frac{\varepsilon_{0} \varepsilon_{\mathrm{r}} \mathrm{A}}{\mathrm{d}} \\ & =\frac{8.85 \times 10^{-12} \times 8 \times 2500 \times 10^{-6}}{0.5 \times 10^{-6}} \\ \mathrm{C} & =0.354 \times 10^{-6} \mathrm{~F} \end{aligned}

7. Calculate the dielectric constant of a material which when inserted in a parallel plate condenser of area 100 mm² with a distance of separation of 1 mm gives a capacitance of 10−9 F.

Given

A = 100 × 10-6 m², d=1×10-3 m, C = 10-9 F, εr =?

Solution:-

\begin{aligned} C & =\frac{\varepsilon_{0} \varepsilon_{\mathrm{r}} \mathrm{A}}{\mathrm{d}} \\ \varepsilon_{\mathrm{r}} & =\frac{\mathrm{Cd}}{\varepsilon_{\mathrm{o}} \mathrm{A}} \end{aligned} \begin{aligned} & =\frac{10^{-9} \times 1 \times 10^{-3}}{8.85 \times 10^{-12} \times 100 \times 10^{-6}} \\ & =\frac{10^{-12}}{8.85 \times 10^{-18}} \\ & =1.129 \times 10^{-3} \times 10^{6} \\ & \varepsilon_{\mathrm{r}}=1129.9 \end{aligned}

8. Calculate the relative dielectric constant of a barium titanate crystal, which when inserted in a parallel plate condenser of area 10 mm × 10 mm and distance of separation of 2 mm, gives a capacitance of 10−9 F.

Solution :-

Given

\begin{aligned} \mathrm{C} & =\frac{\varepsilon_{0} \varepsilon_{\mathrm{r}} \mathrm{A}}{\mathrm{d}} \\ \mathrm{C} & =10^{-9} \mathrm{~F} \\ \mathrm{~d} & =2 \mathrm{~mm}=2 \times 10^{-3} \mathrm{~m} \\ \varepsilon_{\mathrm{o}} & =8.854 \times 10^{-12} \mathrm{Fm}^{-1} \\ \varepsilon_{\mathrm{r}} & =\frac{\mathrm{Cd}}{\varepsilon_{\mathrm{o}} \mathrm{A}}=\frac{10^{-9} \times 2 \times 10^{-3}}{8.854 \times 10^{-12} \times 100 \times 10^{-6}} \\ & =2259 \mathrm{~F} . \end{aligned}

9. Calculate the polarization produced in a dielectric medium of dielectric constant 6 when it is subjected to an electric field of 100 V/m.

Solution :-

Formula \begin{aligned} \mathrm{p} & =\varepsilon_{\mathrm{o}} \chi_{\mathrm{o}} \mathrm{E} \\ & =\mathrm{E} \varepsilon_{\mathrm{o}}\left(\varepsilon_{\mathrm{r}}-1\right) \\ \mathrm{E} & =100 \mathrm{~V} / \mathrm{m} \\ \varepsilon_{\mathrm{o}} & =8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m} \\ \varepsilon_{\mathrm{r}} & =6 \end{aligned}

Given

Hence \begin{aligned} \mathrm{P} & =100 \times 8.85 \times 10^{-12}(6-1) \\ & =100 \times 8.85 \times 5 \times 10^{-12} \\ & =4.425 \times 10^{-9} \mathrm{C} / \mathrm{m}^{2} \end{aligned}


10. Calculate the electric polarizability of Xenon. The radius of Xenon atom is 0.158 nm.

Solution :-

We know electric polarizability

αe = 4πε0R3

Given R = 0.158 × 10-9 m

Hence, α= 4×π×8.85×10-12×(0.158×10-9)3

=4.388×10-40 Fm2

About the author

Santhakumar Raja

Hi, This blog is dedicated to students to stay update in the education industry. Motivates students to become better readers and writers.

View all posts

Leave a Reply