Semiconducting Materials – Solved Problems

1. Calculate the intrinsic carrier concentration in germanium at 300 K. Given that me *=1.09 m0, mh *=0.31 m0 and Eg = 0.68 eV.

Given

T = 300 K, k=1.38×10-23 Jk-1, h=6.626×10-34 Js,
m0 = 9.11×10-31 Kg, Eg = 0.68 eV = 0.68×1.6×10-19 J,
me *=1.09 m0 = 9.929×10-31 Kg, mp* = 0.31
m0 = 2.824×10-31 Kg, ni =?

Solution :-

\begin{aligned} \mathrm{n}_{\mathrm{i}} & =2\left(\frac{2 \pi \mathrm{kT}}{\mathrm{h}^{2}}\right)^{3 / 2}\left(\mathrm{~m}_{\mathrm{e}}^{*} \mathrm{~m}_{\mathrm{h}}^{*}\right)^{3 / 4} \exp -\left(\frac{\mathrm{E}_{\mathrm{g}}}{2 \mathrm{kT}}\right) \\ \mathrm{n}_{\mathrm{i}} & \left.=2\left[\frac{2 \times 3.14 \times 1.38 \times 10^{-23} \times 300}{\left(6.626 \times 10^{-34}\right)^{2}}\right]^{3 / 2}\left(9.929 \times 2.824 \times 10^{-62}\right)^{3 / 4} \times \mathrm{e}^{-\left[\frac{0.68 \times 1.6 \times 10^{-19}}{2 \times 1.38 \times 10^{-23} \times 300}\right.}\right] \\ & =2\left[\frac{2.599 \times 10^{-20}}{6.626 \times 6.626 \times 10^{-68}}\right]^{3 / 2} \times\left(3.853 \times 10^{-46}\right) \times \frac{1}{\mathrm{e}^{13.14}} \\ & =2\left[5.9197 \times 10^{46}\right]^{3 / 2} \times 3.853 \times 10^{-46} \times \frac{1}{508896.53} \\ \mathrm{n}_{\mathrm{i}} & =2.18 \times 10^{19} / \mathrm{m}^{3} \end{aligned}

2. Mobilities of electrons and holes in a sample of intrinsic germanium at 300 Kare 0.32 m² V-1 s−1 and 0.15 m² V-1 s−1 respectively. If the conductivity of the specimen is −1 m−1, compute the carrier concentration.

Given

σi = 2.0 Ω-1 m-1, μe = 0.32 m2 V-1 s-1. μh = 0.15m² V-1 s-1 e=1.602×10-19 C, ni = ?

Solution:-

\begin{aligned} \sigma_{\mathrm{i}} & =\mathrm{n}_{\mathrm{i}} \mathrm{e}\left(\mu_{\mathrm{e}}+\mu_{\mathrm{h}}\right) \\ \mathrm{n}_{\mathrm{i}} & =\frac{\sigma_{\mathrm{i}}}{\mathrm{e}\left(\mu_{\mathrm{e}}+\mu_{\mathrm{h}}\right)} \\ & =\frac{2.0}{1.602 \times 10^{-19} \times(0.32+0.15)} \\ \mathrm{n}_{\mathrm{i}} & =2.656 \times 10^{19} / \mathrm{m}^{3} \end{aligned} 

3. The following data are given for intrinsic germanium at 300 K ni=2.4×1019/m³,μe=0.39 m² V-1 s−1h=0.19 m² V-1 s−1. Calculate the conductivity of the sample.

Given

μe = 0.39 m2 V-1 s-1, μh=0.19m² V-1 s-1, e=1.602×10-19 C, σi =?

Solution:-

σi = nie(μe + μh)

=2.4×1019 × 1.602 × 10-19 (0.39+0.19)

σi = 2.22Ω-1 m-1


4. The Hall coefficient of certain silicon specimen was found to be −7.35×10−5 m³ C−1. The -ve sign indicates it is n type of semiconductor. Calculate the density and mobility of charge carrier if σ=200Ω−1 m−1.

Given

RH = 7.35×10-5 m3 C-1, σ = 200Ω-1 m-1

Solution:-

\begin{aligned} \mathrm{n}_{\mathrm{e}} & =\frac{-1}{\mathrm{eR}_{\mathrm{H}}}=\frac{-1}{1.602 \times 10^{-19}\left(-7.35 \times 10^{-5}\right)} \\ \mathrm{n}_{\mathrm{e}} & =8.492 \times 10^{22} / \mathrm{m}^{3} \\ \therefore \mu_{\mathrm{e}} & =\frac{\sigma}{\mathrm{n}_{\mathrm{e}} \mathrm{e}} \\ & =\frac{200}{8.492 \times 10^{22} \times 1.602 \times 10^{-19}} \\ \mu_{\mathrm{e}} & =0.0147 \mathrm{~m}^{2} \mathrm{v}^{-1} \mathrm{~s}^{-1} \end{aligned}

5. A Silicon plate of thickness 1 mm, breadth 10 mm and length 100 mm is placed in a magnetic field of 0.5Wb/m² acting perpendicular to it’s thickness. If 10-2 A current flows along it’s length. Calculate the Hall voltage developed if the Hall coefficient is 3.66×10-4 m³ / coulomb.

Given

RH= 3.66×10-4 m³ / C,I=10-2 A, B=0.5 Wb/m², t=1mm, VH=?

Solution:-

\begin{aligned} R_{H} & =\frac{V_{H} t}{I_{x} B} \\ V_{H} & =\frac{R_{H} I_{x} B}{t} \\ & =\frac{3.66 \times 10^{-4} \times 10^{-2} \times 0.5}{1 \times 10^{-3}} \\ V_{H} & =1.83 \mathrm{mV} \end{aligned}

6. A sample of n type semiconductor has a resistivity of 10−3 ohm –m and a Hall coefficient of 10−4 m³/C. Assuming only electrons as charge carriers, determine the electron density and mobility.

Given

RH = 10-4 m³ / C, ρ = 10-3 ohm/m, n=? μ=?

Solution:-

\begin{aligned} \mathrm{R}_{\mathrm{H}} & =\frac{1}{\mathrm{ne}} \\ \mathrm{n} & =\frac{1}{\mathrm{eR}_{\mathrm{H}}}=\frac{1}{1.602 \times 10^{-19} \times 10^{-4}} \\ \mathrm{n} & =6.24 \times 10^{22} / \mathrm{m}^{3} \\ \sigma & =\mathrm{ne} \mu \\ \rho & =\frac{1}{\sigma}=\frac{1}{\mathrm{ne} \mu} \\ \mu & =\frac{1}{\mathrm{ne} \rho}=\frac{1}{6.24 \times 10^{22} \times 1.602 \times 10^{-19} \times 10^{-3}} \\ \mu & =0.1 \mathrm{~m}^{2} / \mathrm{Vs} \end{aligned}

7. Find the resistance of an intrinsic germanium rod 1 cm long, 1 mm wide and 1 mm thick at 300 K.

For germanium ni = 2.5×1019 / m³

μe = 0.39 m² V-1 s-1

μe =  0.19 m² V-1 s-1 at 300 K

Given data

Intrinsic carrier concentration ni = 2.5×1019 / m³
Electron mobility μe = 0.39 m² V-1 s-1
Hole mobility μe =  0.19 m² V-1 s-1

Solution:-

We know that the electrical conductivity of an intrinsic semiconductor (Germanium)

σ = ni e(μe + μh)

Substituting the given values, we have

σ = 2.5×1019 × 1.6×10-19 (0.39+0.19)

σ = 2.32 Ω-1 m-1

Resistance \mathrm{R}=\frac{\rho \mathrm{l}}{\mathrm{A}} \text { or } \mathrm{R}=\frac{1}{\sigma \mathrm{A}}\left(\therefore \sigma=\frac{1}{\rho}\right)

where,

l → length of the rod = 1cm =1×10-2 m
A → Area of cross-section (width x thickness)
A → (1×10-3 m)(1×10-3 m)

\begin{aligned} & =\frac{1 \times 10^{-2}}{2.32 \times\left(1 \times 10^{-3} \times 1 \times 10^{-3}\right)} \\ & =4310 \Omega \end{aligned}

Resistance of germanium = 4310Ω


8. For an intrinsic semiconductor with a band gap of 0.7 eV, determine the position of EF at T=300 K if mh=6 me.

Given Data

\mathrm{E}_{\mathrm{g}}=0.7 \mathrm{eV}\left(\right. or) 1.12 \times 10^{-19} Joules, \mathrm{T}=300 \mathrm{~K}, \frac{\mathrm{m}_{\mathrm{h}}^{*}}{\mathrm{~m}_{\mathrm{e}}^{*}}=6

Solution:-

We know Fermi energy of an intrinsic semiconductor

\begin{aligned} \mathrm{E}_{\mathrm{F}} & =\frac{\mathrm{E}_{\mathrm{g}}}{2}+\frac{3 \mathrm{~K}_{\mathrm{B}} \mathrm{T}}{4} \log _{\mathrm{e}}\left(\frac{\mathrm{m}_{\mathrm{h}}^{*}}{\mathrm{~m}_{\mathrm{e}}^{*}}\right) \\ \mathrm{E}_{\mathrm{F}} & =\frac{1.12 \times 10^{-19}}{2}+\frac{3 \times 1.38 \times 10^{-23} \times 300}{4} \log _{\mathrm{e}} 6 \\ & =5.6 \times 10^{-20}+5.5634 \times 10^{-21} \\ \mathrm{E}_{\mathrm{F}} & =6.15634 \times 10^{-20} \mathrm{~J} \text { (or) } \mathrm{E}_{\mathrm{F}}=\frac{6.15634 \times 10^{-20}}{1.6 \times 10^{-19}} \mathrm{eV} \\ \mathrm{E}_{\mathrm{F}} & =0.3847 \mathrm{eV} \end{aligned}

9. Find the intrinsic resistivity of Ge at room temperature 300K if the carrier density is 2.15×1013/cm³.

Given Data

Mobility of electron μe = 3900 cm² / Vs
Mobility of hole μn = 1900 cm² / Vs
Mobility density ni = 2.15×1013 /cm³

Solution:-

We know that σi = e(μe + μh) ni

Substituting the given values, we have

\begin{aligned} \sigma_{\mathrm{i}} & =1.6 \times 10^{-19} \times(3900+1900) \times 2.15 \times 10^{13} \\ & =1.6 \times 10^{-19} \times 5800 \times 2.15 \times 10^{13} \\ \sigma_{\mathrm{i}} & =2.32 \times 10^{-2} \mathrm{ohm} / \mathrm{cm} \end{aligned}

Intrinsic resistivity \rho_{\mathrm{i}}=\frac{1}{\sigma_{\mathrm{i}}}=\frac{1}{2.32 \times 10^{-2}} \rho_{\mathrm{i}}=43 \Omega \mathrm{cm}

About the author

Santhakumar Raja

Hi, This blog is dedicated to students to stay update in the education industry. Motivates students to become better readers and writers.

View all posts

Leave a Reply