Clausius – Mossotti Equation

By
On:

If N be the number of molecules per unit volume and α the molecular polarizability then

Total polarization  \quad \mathrm{P}=\mathrm{N} \alpha \mathrm{E}_{\mathrm{int}}

eqn, (10)

 \therefore \quad E_{\text {int }}=\frac{\mathrm{P}}{\mathrm{N} \alpha}

Further, we know that

 \begin{aligned} \mathrm{D} & =\varepsilon \mathrm{E}=\varepsilon_{0} \mathrm{E}+\mathrm{P} \\ \left(\varepsilon-\varepsilon_{0}\right) \mathrm{E} & =\mathrm{P} \\ \mathrm{E} & =\frac{\mathrm{P}}{\varepsilon-\varepsilon_{0}} \end{aligned}

Lorentz field is given by

 \mathrm{E}_{\mathrm{int}}=\mathrm{E}+\frac{\mathrm{P}}{3 \varepsilon_{0}}

Substituting the value for E, we have

 \begin{aligned} & \mathrm{E}_{\text {int }}=\frac{P}{\varepsilon-\varepsilon_{0}}+\frac{P}{3 \varepsilon_{0}} \\ & \mathrm{E}_{\text {int }}=P\left[\frac{3 \varepsilon_{0}+\varepsilon-\varepsilon_{0}}{3 \varepsilon_{0}\left(\varepsilon- varepsilon_{0}\right)}\right] \\ & \mathrm{E}_{\text {int }}=\frac{P}{3 \varepsilon_{0}}\left[\frac{2 \varepsilon_{0}+\varepsilon}{\left(\varepsilon-\varepsilon_{0}\right)}\right] \end{aligned} eqn, (13)

Substituting eqn, (10) in (13), we have

 \begin{aligned} & \frac{P}{N \alpha}=\frac{P}{3 \varepsilon_{0}}\left(\frac{\varepsilon+2 \varepsilon_{0}}{\varepsilon-\varepsilon_{0}}\right) \\ & \frac{N \alpha}{3 \varepsilon_{0}}=\frac{\varepsilon-\varepsilon_{0}}{\varepsilon+2 \varepsilon_{0}} \end{aligned}

 =\frac{\left(\frac{\varepsilon}{\varepsilon_{0}}\right)-1}{\left(\frac{\varepsilon}{\varepsilon_{0}}\right)+2}

 \frac{\mathrm{N} \alpha}{3 \varepsilon_{0}}=\frac{\varepsilon_{\mathrm{r}}-1}{\varepsilon_{\mathrm{r}}+2} \quad \ldots(14) \quad\left[\therefore \varepsilon_{\mathrm{r}}=\frac{\varepsilon}{\varepsilon_{0}}\right]

The above equation is Clausius – Mosotti relation, which relates the dielectric constant of the material and polarizability. Thus, it relates macroscopic quantity dielectric constant with microscopic quantity polarizability.

Read More Topics
Internal field or local field
Frequency and temperature dependance of polarization
Classification of dielectric materials

Santhakumar Raja

I am the founder of Pedagogy Zone, a dedicated education platform that provides reliable and up-to-date information on academic trends, learning resources, and educational developments.

For Feedback - techactive6@gmail.com