Clausius – Mossotti Equation

By
On:

If N be the number of molecules per unit volume and α the molecular polarizability then

Total polarization \quad \mathrm{P}=\mathrm{N} \alpha \mathrm{E}_{\mathrm{int}}

eqn, (10)

\therefore \quad E_{\text {int }}=\frac{\mathrm{P}}{\mathrm{N} \alpha}

Further, we know that

\begin{aligned} \mathrm{D} & =\varepsilon \mathrm{E}=\varepsilon_{0} \mathrm{E}+\mathrm{P} \\ \left(\varepsilon-\varepsilon_{0}\right) \mathrm{E} & =\mathrm{P} \\ \mathrm{E} & =\frac{\mathrm{P}}{\varepsilon-\varepsilon_{0}} \end{aligned}

Lorentz field is given by

\mathrm{E}_{\mathrm{int}}=\mathrm{E}+\frac{\mathrm{P}}{3 \varepsilon_{0}}

Substituting the value for E, we have

\begin{aligned} & \mathrm{E}_{\text {int }}=\frac{P}{\varepsilon-\varepsilon_{0}}+\frac{P}{3 \varepsilon_{0}} \\ & \mathrm{E}_{\text {int }}=P\left[\frac{3 \varepsilon_{0}+\varepsilon-\varepsilon_{0}}{3 \varepsilon_{0}\left(\varepsilon- varepsilon_{0}\right)}\right] \\ & \mathrm{E}_{\text {int }}=\frac{P}{3 \varepsilon_{0}}\left[\frac{2 \varepsilon_{0}+\varepsilon}{\left(\varepsilon-\varepsilon_{0}\right)}\right] \end{aligned} eqn, (13)

Substituting eqn, (10) in (13), we have

\begin{aligned} & \frac{P}{N \alpha}=\frac{P}{3 \varepsilon_{0}}\left(\frac{\varepsilon+2 \varepsilon_{0}}{\varepsilon-\varepsilon_{0}}\right) \\ & \frac{N \alpha}{3 \varepsilon_{0}}=\frac{\varepsilon-\varepsilon_{0}}{\varepsilon+2 \varepsilon_{0}} \end{aligned} =\frac{\left(\frac{\varepsilon}{\varepsilon_{0}}\right)-1}{\left(\frac{\varepsilon}{\varepsilon_{0}}\right)+2} \frac{\mathrm{N} \alpha}{3 \varepsilon_{0}}=\frac{\varepsilon_{\mathrm{r}}-1}{\varepsilon_{\mathrm{r}}+2} \quad \ldots(14) \quad\left[\therefore \varepsilon_{\mathrm{r}}=\frac{\varepsilon}{\varepsilon_{0}}\right]

The above equation is Clausius – Mosotti relation, which relates the dielectric constant of the material and polarizability. Thus, it relates macroscopic quantity dielectric constant with microscopic quantity polarizability.

Read More Topics
Internal field or local field
Frequency and temperature dependance of polarization
Classification of dielectric materials

Santhakumar Raja

Hello The goal of this blog is to keep students informed about developments in the field of education. encourages pupils to improve as writers and readers.

For Feedback - techactive6@gmail.com

Leave a Comment