1. Calculate the intrinsic carrier concentration in germanium at 300 K. Given that me *=1.09 m0, mh *=0.31 m0 and Eg = 0.68 eV.
Given
T = 300 K, k=1.38×10-23 Jk-1, h=6.626×10-34 Js,
m0 = 9.11×10-31 Kg, Eg = 0.68 eV = 0.68×1.6×10-19 J,
me *=1.09 m0 = 9.929×10-31 Kg, mp* = 0.31
m0 = 2.824×10-31 Kg, ni =?
Solution :-
2. Mobilities of electrons and holes in a sample of intrinsic germanium at 300 Kare 0.32 m² V-1 s−1 and 0.15 m² V-1 s−1 respectively. If the conductivity of the specimen is 2Ω−1 m−1, compute the carrier concentration.
Given
σi = 2.0 Ω-1 m-1, μe = 0.32 m2 V-1 s-1. μh = 0.15m² V-1 s-1 e=1.602×10-19 C, ni = ?
Solution:-
3. The following data are given for intrinsic germanium at 300 K ni=2.4×1019/m³,μe=0.39 m² V-1 s−1,μh=0.19 m² V-1 s−1. Calculate the conductivity of the sample.
Given
μe = 0.39 m2 V-1 s-1, μh=0.19m² V-1 s-1, e=1.602×10-19 C, σi =?
Solution:-
σi = nie(μe + μh)
=2.4×1019 × 1.602 × 10-19 (0.39+0.19)
σi = 2.22Ω-1 m-1
4. The Hall coefficient of certain silicon specimen was found to be −7.35×10−5 m³ C−1. The -ve sign indicates it is n type of semiconductor. Calculate the density and mobility of charge carrier if σ=200Ω−1 m−1.
Given
RH = 7.35×10-5 m3 C-1, σ = 200Ω-1 m-1
Solution:-
5. A Silicon plate of thickness 1 mm, breadth 10 mm and length 100 mm is placed in a magnetic field of 0.5Wb/m² acting perpendicular to it’s thickness. If 10-2 A current flows along it’s length. Calculate the Hall voltage developed if the Hall coefficient is 3.66×10-4 m³ / coulomb.
Given
RH= 3.66×10-4 m³ / C,I=10-2 A, B=0.5 Wb/m², t=1mm, VH=?
Solution:-
6. A sample of n type semiconductor has a resistivity of 10−3 ohm –m and a Hall coefficient of 10−4 m³/C. Assuming only electrons as charge carriers, determine the electron density and mobility.
Given
RH = 10-4 m³ / C, ρ = 10-3 ohm/m, n=? μ=?
Solution:-
7. Find the resistance of an intrinsic germanium rod 1 cm long, 1 mm wide and 1 mm thick at 300 K.
For germanium ni = 2.5×1019 / m³
μe = 0.39 m² V-1 s-1
μe = 0.19 m² V-1 s-1 at 300 K
Given data
Intrinsic carrier concentration ni = 2.5×1019 / m³
Electron mobility μe = 0.39 m² V-1 s-1
Hole mobility μe = 0.19 m² V-1 s-1
Solution:-
We know that the electrical conductivity of an intrinsic semiconductor (Germanium)
σ = ni e(μe + μh)
Substituting the given values, we have
σ = 2.5×1019 × 1.6×10-19 (0.39+0.19)
σ = 2.32 Ω-1 m-1
Resistance
where,
l → length of the rod = 1cm =1×10-2 m
A → Area of cross-section (width x thickness)
A → (1×10-3 m)(1×10-3 m)
Resistance of germanium = 4310Ω
8. For an intrinsic semiconductor with a band gap of 0.7 eV, determine the position of EF at T=300 K if mh∗=6 me∗.
Given Data
Solution:-
We know Fermi energy of an intrinsic semiconductor
9. Find the intrinsic resistivity of Ge at room temperature 300K if the carrier density is 2.15×1013/cm³.
Given Data
Mobility of electron μe = 3900 cm² / Vs
Mobility of hole μn = 1900 cm² / Vs
Mobility density ni = 2.15×1013 /cm³
Solution:-
We know that σi = e(μe + μh) ni
Substituting the given values, we have
Intrinsic resistivity