1. Calculate the intrinsic carrier concentration in germanium at 300 K. Given that me *=1.09 m0, mh *=0.31 m0 and Eg = 0.68 eV.
Given
T = 300 K, k=1.38×10-23 Jk-1, h=6.626×10-34 Js,
m0 = 9.11×10-31 Kg, Eg = 0.68 eV = 0.68×1.6×10-19 J,
me *=1.09 m0 = 9.929×10-31 Kg, mp* = 0.31
m0 = 2.824×10-31 Kg, ni =?
Solution :-
\begin{aligned} \mathrm{n}_{\mathrm{i}} & =2\left(\frac{2 \pi \mathrm{kT}}{\mathrm{h}^{2}}\right)^{3 / 2}\left(\mathrm{~m}_{\mathrm{e}}^{*} \mathrm{~m}_{\mathrm{h}}^{*}\right)^{3 / 4} \exp -\left(\frac{\mathrm{E}_{\mathrm{g}}}{2 \mathrm{kT}}\right) \\ \mathrm{n}_{\mathrm{i}} & \left.=2\left[\frac{2 \times 3.14 \times 1.38 \times 10^{-23} \times 300}{\left(6.626 \times 10^{-34}\right)^{2}}\right]^{3 / 2}\left(9.929 \times 2.824 \times 10^{-62}\right)^{3 / 4} \times \mathrm{e}^{-\left[\frac{0.68 \times 1.6 \times 10^{-19}}{2 \times 1.38 \times 10^{-23} \times 300}\right.}\right] \\ & =2\left[\frac{2.599 \times 10^{-20}}{6.626 \times 6.626 \times 10^{-68}}\right]^{3 / 2} \times\left(3.853 \times 10^{-46}\right) \times \frac{1}{\mathrm{e}^{13.14}} \\ & =2\left[5.9197 \times 10^{46}\right]^{3 / 2} \times 3.853 \times 10^{-46} \times \frac{1}{508896.53} \\ \mathrm{n}_{\mathrm{i}} & =2.18 \times 10^{19} / \mathrm{m}^{3} \end{aligned}2. Mobilities of electrons and holes in a sample of intrinsic germanium at 300 Kare 0.32 m² V-1 s−1 and 0.15 m² V-1 s−1 respectively. If the conductivity of the specimen is 2Ω−1 m−1, compute the carrier concentration.
Given
σi = 2.0 Ω-1 m-1, μe = 0.32 m2 V-1 s-1. μh = 0.15m² V-1 s-1 e=1.602×10-19 C, ni = ?
Solution:-
\begin{aligned} \sigma_{\mathrm{i}} & =\mathrm{n}_{\mathrm{i}} \mathrm{e}\left(\mu_{\mathrm{e}}+\mu_{\mathrm{h}}\right) \\ \mathrm{n}_{\mathrm{i}} & =\frac{\sigma_{\mathrm{i}}}{\mathrm{e}\left(\mu_{\mathrm{e}}+\mu_{\mathrm{h}}\right)} \\ & =\frac{2.0}{1.602 \times 10^{-19} \times(0.32+0.15)} \\ \mathrm{n}_{\mathrm{i}} & =2.656 \times 10^{19} / \mathrm{m}^{3} \end{aligned}3. The following data are given for intrinsic germanium at 300 K ni=2.4×1019/m³,μe=0.39 m² V-1 s−1,μh=0.19 m² V-1 s−1. Calculate the conductivity of the sample.
Given
μe = 0.39 m2 V-1 s-1, μh=0.19m² V-1 s-1, e=1.602×10-19 C, σi =?
Solution:-
σi = nie(μe + μh)
=2.4×1019 × 1.602 × 10-19 (0.39+0.19)
σi = 2.22Ω-1 m-1
4. The Hall coefficient of certain silicon specimen was found to be −7.35×10−5 m³ C−1. The -ve sign indicates it is n type of semiconductor. Calculate the density and mobility of charge carrier if σ=200Ω−1 m−1.
Given
RH = 7.35×10-5 m3 C-1, σ = 200Ω-1 m-1
Solution:-
\begin{aligned} \mathrm{n}_{\mathrm{e}} & =\frac{-1}{\mathrm{eR}_{\mathrm{H}}}=\frac{-1}{1.602 \times 10^{-19}\left(-7.35 \times 10^{-5}\right)} \\ \mathrm{n}_{\mathrm{e}} & =8.492 \times 10^{22} / \mathrm{m}^{3} \\ \therefore \mu_{\mathrm{e}} & =\frac{\sigma}{\mathrm{n}_{\mathrm{e}} \mathrm{e}} \\ & =\frac{200}{8.492 \times 10^{22} \times 1.602 \times 10^{-19}} \\ \mu_{\mathrm{e}} & =0.0147 \mathrm{~m}^{2} \mathrm{v}^{-1} \mathrm{~s}^{-1} \end{aligned}5. A Silicon plate of thickness 1 mm, breadth 10 mm and length 100 mm is placed in a magnetic field of 0.5Wb/m² acting perpendicular to it’s thickness. If 10-2 A current flows along it’s length. Calculate the Hall voltage developed if the Hall coefficient is 3.66×10-4 m³ / coulomb.
Given
RH= 3.66×10-4 m³ / C,I=10-2 A, B=0.5 Wb/m², t=1mm, VH=?
Solution:-
\begin{aligned} R_{H} & =\frac{V_{H} t}{I_{x} B} \\ V_{H} & =\frac{R_{H} I_{x} B}{t} \\ & =\frac{3.66 \times 10^{-4} \times 10^{-2} \times 0.5}{1 \times 10^{-3}} \\ V_{H} & =1.83 \mathrm{mV} \end{aligned}6. A sample of n type semiconductor has a resistivity of 10−3 ohm –m and a Hall coefficient of 10−4 m³/C. Assuming only electrons as charge carriers, determine the electron density and mobility.
Given
RH = 10-4 m³ / C, ρ = 10-3 ohm/m, n=? μ=?
Solution:-
\begin{aligned} \mathrm{R}_{\mathrm{H}} & =\frac{1}{\mathrm{ne}} \\ \mathrm{n} & =\frac{1}{\mathrm{eR}_{\mathrm{H}}}=\frac{1}{1.602 \times 10^{-19} \times 10^{-4}} \\ \mathrm{n} & =6.24 \times 10^{22} / \mathrm{m}^{3} \\ \sigma & =\mathrm{ne} \mu \\ \rho & =\frac{1}{\sigma}=\frac{1}{\mathrm{ne} \mu} \\ \mu & =\frac{1}{\mathrm{ne} \rho}=\frac{1}{6.24 \times 10^{22} \times 1.602 \times 10^{-19} \times 10^{-3}} \\ \mu & =0.1 \mathrm{~m}^{2} / \mathrm{Vs} \end{aligned}7. Find the resistance of an intrinsic germanium rod 1 cm long, 1 mm wide and 1 mm thick at 300 K.
For germanium ni = 2.5×1019 / m³
μe = 0.39 m² V-1 s-1
μe = 0.19 m² V-1 s-1 at 300 K
Given data
Intrinsic carrier concentration ni = 2.5×1019 / m³
Electron mobility μe = 0.39 m² V-1 s-1
Hole mobility μe = 0.19 m² V-1 s-1
Solution:-
We know that the electrical conductivity of an intrinsic semiconductor (Germanium)
σ = ni e(μe + μh)
Substituting the given values, we have
σ = 2.5×1019 × 1.6×10-19 (0.39+0.19)
σ = 2.32 Ω-1 m-1
Resistance \mathrm{R}=\frac{\rho \mathrm{l}}{\mathrm{A}} \text { or } \mathrm{R}=\frac{1}{\sigma \mathrm{A}}\left(\therefore \sigma=\frac{1}{\rho}\right)
where,
l → length of the rod = 1cm =1×10-2 m
A → Area of cross-section (width x thickness)
A → (1×10-3 m)(1×10-3 m)
Resistance of germanium = 4310Ω
8. For an intrinsic semiconductor with a band gap of 0.7 eV, determine the position of EF at T=300 K if mh∗=6 me∗.
Given Data
\mathrm{E}_{\mathrm{g}}=0.7 \mathrm{eV}\left(\right. or) 1.12 \times 10^{-19} Joules, \mathrm{T}=300 \mathrm{~K}, \frac{\mathrm{m}_{\mathrm{h}}^{*}}{\mathrm{~m}_{\mathrm{e}}^{*}}=6Solution:-
We know Fermi energy of an intrinsic semiconductor
\begin{aligned} \mathrm{E}_{\mathrm{F}} & =\frac{\mathrm{E}_{\mathrm{g}}}{2}+\frac{3 \mathrm{~K}_{\mathrm{B}} \mathrm{T}}{4} \log _{\mathrm{e}}\left(\frac{\mathrm{m}_{\mathrm{h}}^{*}}{\mathrm{~m}_{\mathrm{e}}^{*}}\right) \\ \mathrm{E}_{\mathrm{F}} & =\frac{1.12 \times 10^{-19}}{2}+\frac{3 \times 1.38 \times 10^{-23} \times 300}{4} \log _{\mathrm{e}} 6 \\ & =5.6 \times 10^{-20}+5.5634 \times 10^{-21} \\ \mathrm{E}_{\mathrm{F}} & =6.15634 \times 10^{-20} \mathrm{~J} \text { (or) } \mathrm{E}_{\mathrm{F}}=\frac{6.15634 \times 10^{-20}}{1.6 \times 10^{-19}} \mathrm{eV} \\ \mathrm{E}_{\mathrm{F}} & =0.3847 \mathrm{eV} \end{aligned}9. Find the intrinsic resistivity of Ge at room temperature 300K if the carrier density is 2.15×1013/cm³.
Given Data
Mobility of electron μe = 3900 cm² / Vs
Mobility of hole μn = 1900 cm² / Vs
Mobility density ni = 2.15×1013 /cm³
Solution:-
We know that σi = e(μe + μh) ni
Substituting the given values, we have
\begin{aligned} \sigma_{\mathrm{i}} & =1.6 \times 10^{-19} \times(3900+1900) \times 2.15 \times 10^{13} \\ & =1.6 \times 10^{-19} \times 5800 \times 2.15 \times 10^{13} \\ \sigma_{\mathrm{i}} & =2.32 \times 10^{-2} \mathrm{ohm} / \mathrm{cm} \end{aligned}Intrinsic resistivity \rho_{\mathrm{i}}=\frac{1}{\sigma_{\mathrm{i}}}=\frac{1}{2.32 \times 10^{-2}} \rho_{\mathrm{i}}=43 \Omega \mathrm{cm}