1. A paramagnetic material has a magnetic field intensity of 104 Am-1. If the susceptibility of the material at room temperature is 3.7×10-3. Calculate the magnetization and flux density in the material.
Given
H = 104 A m-1, χ = 3.7 × 10-3, I =?, B = ?
Solution:-
(i) \begin{aligned} \chi & =\frac{\mathrm{I}}{\mathrm{H}} \\ \mathrm{I} & =\chi \mathrm{H} \\ & =3.7 \times 10^{-3} \times 10^{4} \\ & =3.7 \times 10 \\ \mathrm{I} & =37 \mathrm{Am}^{-1} \end{aligned}
(ii) \begin{aligned} \mathrm{B} & =\mu_{\mathrm{o}}(\mathrm{I}+\mathrm{H}) \\ & =4 \pi \times 10^{-7} \times\left(37+10^{4}\right) \\ & =126179.4 \times 10^{-7} \\ \mathrm{~B} & =0.0126 \mathrm{Wbm}^{-2} \end{aligned}
2. A magnetic material has a magnetization of 2300 Am−1 and produces a flux density of 0.00314 Wb m−2. Calculate the magnetizing force and the relative permeability of the material.
Given
I = 23000 Am-1, B = 0.00314Wb m-2, H =?, μr = ?
Solution:-
\begin{aligned} \mathrm{B} & =\mu_{\mathrm{o}}(\mathrm{I}+\mathrm{H}) \\ \mathrm{H} & =\frac{\mathrm{B}}{\mu_{0}}-\mathrm{I} \\ & =\frac{0.00314}{4 \pi \times 10^{-7}}-2300 \\ \mathrm{H} & =198.7326 \mathrm{~A} \mathrm{~m}^{-1} \\ \chi & =\frac{\mathrm{I}}{\mathrm{H}}=\left(\mu_{\mathrm{r}}-1\right) \\ \mu_{\mathrm{r}} & =\frac{\mathrm{I}}{\mathrm{H}}+1 \\ & =\frac{2300}{198.7326}+1 \\ \mu_{\mathrm{r}} & =12.573 \end{aligned}μr = 12.573
3. A paramagnetic material has BCC structure with a cubic edge of 2.5 A°. If the saturation value of magnetization is 1.8×106 Am−1, Calculate the magnetization contributed per atom in Bohr magnetons.
Given
a = 2.5 × 10-10 m, I = 1.8×106 Am-1, MT = ?
Solution:-
The number of atoms present per unit volume
\begin{aligned} \mathrm{N} & =\frac{\text { Number of atoms present in an unit cell }}{\text { Volume of the unit cell }} \\ & =\frac{2}{\left(2.5 \times 10^{-10}\right)^{3}} \\ \mathrm{~N} & =1.28 \times 10^{29} \mathrm{~m}^{-3} \end{aligned}The magnetization produced per atom =\frac{\text { Totalmagnetisation }}{\text { No. of atomsper unit volun }} \begin{aligned} & =\frac{\mathrm{I}}{\mathrm{N}} \\ & =\frac{1.8 \times 10^{6}}{1.28 \times 10^{29}} \\ \mathrm{I}_{\mathrm{T}} & =1.40625 \times 10^{-23} \mathrm{Am}^{-2} \\ \mu_{\mathrm{B}} & =\frac{\mathrm{eh}}{4 \pi \mathrm{m}} \\ & =\frac{1.6 \times 10^{-19} \times 6.625 \times 10^{-34}}{4 \times 3.14 \times 9.1 \times 10^{-31}} \\ \beta & =9.27 \times 10^{-24} \mathrm{~A} \mathrm{~m}^{-2} \end{aligned}
∴ Magnetisation produced per atom in Bohr magneton
\begin{aligned} & =\frac{1.40625 \times 10^{-23}}{9.27 \times 10^{-24}} \\ & =1.516 \mathrm{Bohr} \text { magneton } \end{aligned}4. The saturation magnetic induction of Nickel is 0.65 Wb m−2. If the density of Nickel is 8906 Kg m−3 and its atomic weight is 58.7. Calculate the magnetic moment of the Nickel atom in Bohr magneton.
Given
Bs = 0.65 Wb m-2, ρ = 8906 Kg m-3, Atomic Weight = 58.7, μm = ?
Solution:-
\begin{aligned} N & =\frac{\rho \times \text { Avogadra number }}{\text { Atomic weight }} \\ & =\frac{8906 \times 6.023 \times 10^{26}}{58.7} \\ N & =9.14 \times 10^{28} \text { atoms } / \mathrm{m}^{-3} \end{aligned}When χ is very large, Saturation magnetization
\begin{aligned} B_s & =N \mu_0 \mu_m \\ \mu_m & =\frac{B_s}{N \mu_o} \\ & =\frac{0.65}{9.14 \times 10^{26} \times 4 \times 3.14 \times 10^{-7}} \\ \mu_{\mathrm{m}} & =5.66 \times 10^{-24} \mathrm{Am}^2 \end{aligned}Magnetic moment per Bohr magneton
\therefore \mu_{\mathrm{m}}=\frac{5.66 \times 10^{-24}}{9.29 \times 10^{-24}} Bohr magnetonμm = 0.61 μB
5. In a magnetic material the field strength is found to be 106 Am−1. If the magnetic susceptibility of the material is 0.5×10−5. Calculate the intensity of magnetization and flux density in the material.
Given
H = 106 Am-1, χ = 0.5 × 10-5, B = ?, I = ?
Solution:-
(i) I = χH
= 0.5 × 106 × 10-5
I = 5 A m-1
(ii) B = μ0 (I + H)
= 4 × 3.14 × 10-7 (5 + 106)
B = 1.257 Wbm-2
6. The critical temperature of Niobium is 9.15 K. At 0K the critical field is 0.196 T. Calculate the critical field at 5 K.
Given
Tc = 9.15 K, T = 5 K, H0 = 0.196 T, HC = ?
Solution:-
\mathrm{H}_{\mathrm{c}}=\mathrm{H}_0\left(1-\frac{\mathrm{T}^2}{\mathrm{~T}_{\mathrm{c}}^2}\right) \begin{aligned} & =0.196\left[1-\frac{5^2}{9.15^2}\right] \\ & =0.196 \times 0.7014 \\ c_c & =\mathrm{OH} 374 \text { Tesla } \end{aligned}7. Calculate the critical current through a long thin superconducting wire of radius 0.5 mm. The critical magnetic field is 42.75×103 A/m.
Given
r = 0.5 × 10-3 m, Hc = 42.75 × 103 A/m, Ic = ?
Solution:-
Ic = 2πr Hc
= 2×3.14×0.5×10-3 × 42.75 × 103
Ic = 134.25 Ampere
8. Calculate the critical current for a superconducting wire of lead having a diameter of 1 mm at 4.2K. Critical temperature for lead is 7.18 K and Hc(0) = 6.5 × 104 A/m.
Given
r = 0.5 × 10-3 m, T = 4.2 K, Tc = 7.18 K, H0 = 6.5 × 104 A/m, Ic = ?, Hc = ?
Solution:-
\begin{aligned} \mathrm{H}_c & =\mathrm{H}_{\mathrm{o}}\left(1-\frac{\mathrm{T}^2}{\mathrm{~T}_{\mathrm{C}}^2}\right) \\ & =6.5 \times 10^4\left(1-\frac{4.2^2}{7.18^2}\right) \\ & =6.5 \times 10^4(1-0.3421) \\ \mathrm{H}_{\mathrm{c}} & =42.758 \times 10^3 \text { Tesla } \\ \mathrm{I}_{\mathrm{c}} & =2 \pi \mathrm{r} \mathrm{H}_{\mathrm{c}} \\ & =2 \times 3.14 \times 0.5 \times 10^{-3} \times 42.758 \times 10^3 \\ \mathrm{I}_{\mathrm{c}} & =134.26 \text { Ampere } \end{aligned}9. A voltage of 5.9×10−6 V is applied across a Josephson junction. What is the frequency of the radiation emitted by the junction?
Given
V = 5.9 × 10-6 V, v=?
Solution:-
\begin{aligned} \mathrm{v} & =\frac{2 \mathrm{eV}}{\mathrm{h}} \\ & =\frac{2 \times 1.6 \times 10^{-19} \times 5.9 \times 10^{-6}}{6.62 \times 10^{-34}} \\ v & =2.851 \times 10^9 \mathrm{~Hz} \end{aligned}10. Prove that susceptibility of superconductor is -1 and relative permeability is zero.
Solution:-
eqn. 1
We know, the induced magnetic field B = μo (I+H)
In superconductor, B = 0.
Therefore eqn. (1) can be written as
0 = μo (I+H) eqn. 2
Since, μo #0,
I = -H
We know I/H = χ = -1 eqn. 3
Also, χ = μr = -1 eqn. 4
Equating eqn. (3) and (4) we get
μr -1 = -1
μr = 1 -1
μr = 0
Substituting eqn. (5) in (4) we get
Susceptibility χ= −1 and relative permeability μr = 0
Read More Topics |
Semiconducting materials – solved problems |
Conducting materials – solved problems |
Dielectric materials – solved problems |