Superconducting Materials – Solved Problems

By
On:

1. A paramagnetic material has a magnetic field intensity of 104 Am-1. If the susceptibility of the material at room temperature is 3.7×10-3. Calculate the magnetization and flux density in the material.

Given

H = 104 A m-1, χ = 3.7 × 10-3, I =?, B = ?

Solution:-

(i) \begin{aligned} \chi & =\frac{\mathrm{I}}{\mathrm{H}} \\ \mathrm{I} & =\chi \mathrm{H} \\ & =3.7 \times 10^{-3} \times 10^{4} \\ & =3.7 \times 10 \\ \mathrm{I} & =37 \mathrm{Am}^{-1} \end{aligned}

(ii) \begin{aligned} \mathrm{B} & =\mu_{\mathrm{o}}(\mathrm{I}+\mathrm{H}) \\ & =4 \pi \times 10^{-7} \times\left(37+10^{4}\right) \\ & =126179.4 \times 10^{-7} \\ \mathrm{~B} & =0.0126 \mathrm{Wbm}^{-2} \end{aligned}


2. A magnetic material has a magnetization of 2300 Am−1 and produces a flux density of 0.00314 Wb m−2. Calculate the magnetizing force and the relative permeability of the material.

Given

I = 23000 Am-1, B = 0.00314Wb m-2, H =?, μr = ?

Solution:-

\begin{aligned} \mathrm{B} & =\mu_{\mathrm{o}}(\mathrm{I}+\mathrm{H}) \\ \mathrm{H} & =\frac{\mathrm{B}}{\mu_{0}}-\mathrm{I} \\ & =\frac{0.00314}{4 \pi \times 10^{-7}}-2300 \\ \mathrm{H} & =198.7326 \mathrm{~A} \mathrm{~m}^{-1} \\ \chi & =\frac{\mathrm{I}}{\mathrm{H}}=\left(\mu_{\mathrm{r}}-1\right) \\ \mu_{\mathrm{r}} & =\frac{\mathrm{I}}{\mathrm{H}}+1 \\ & =\frac{2300}{198.7326}+1 \\ \mu_{\mathrm{r}} & =12.573 \end{aligned}

μr = 12.573


3. A paramagnetic material has BCC structure with a cubic edge of 2.5 A°. If the saturation value of magnetization is 1.8×106 Am−1, Calculate the magnetization contributed per atom in Bohr magnetons.

Given

a = 2.5 × 10-10 m, I = 1.8×106 Am-1, MT = ?

Solution:-

The number of atoms present per unit volume

\begin{aligned} \mathrm{N} & =\frac{\text { Number of atoms present in an unit cell }}{\text { Volume of the unit cell }} \\ & =\frac{2}{\left(2.5 \times 10^{-10}\right)^{3}} \\ \mathrm{~N} & =1.28 \times 10^{29} \mathrm{~m}^{-3} \end{aligned}

The magnetization produced per atom =\frac{\text { Totalmagnetisation }}{\text { No. of atomsper unit volun }} \begin{aligned} & =\frac{\mathrm{I}}{\mathrm{N}} \\ & =\frac{1.8 \times 10^{6}}{1.28 \times 10^{29}} \\ \mathrm{I}_{\mathrm{T}} & =1.40625 \times 10^{-23} \mathrm{Am}^{-2} \\ \mu_{\mathrm{B}} & =\frac{\mathrm{eh}}{4 \pi \mathrm{m}} \\ & =\frac{1.6 \times 10^{-19} \times 6.625 \times 10^{-34}}{4 \times 3.14 \times 9.1 \times 10^{-31}} \\ \beta & =9.27 \times 10^{-24} \mathrm{~A} \mathrm{~m}^{-2} \end{aligned}

∴ Magnetisation produced per atom in Bohr magneton

\begin{aligned} & =\frac{1.40625 \times 10^{-23}}{9.27 \times 10^{-24}} \\ & =1.516 \mathrm{Bohr} \text { magneton } \end{aligned}

4. The saturation magnetic induction of Nickel is 0.65 Wb m−2. If the density of Nickel is 8906 Kg m−3 and its atomic weight is 58.7. Calculate the magnetic moment of the Nickel atom in Bohr magneton.

Given

Bs = 0.65 Wb m-2, ρ = 8906 Kg m-3, Atomic Weight = 58.7, μm = ?

Solution:-

\begin{aligned} N & =\frac{\rho \times \text { Avogadra number }}{\text { Atomic weight }} \\ & =\frac{8906 \times 6.023 \times 10^{26}}{58.7} \\ N & =9.14 \times 10^{28} \text { atoms } / \mathrm{m}^{-3} \end{aligned}

When χ is very large, Saturation magnetization

\begin{aligned} B_s & =N \mu_0 \mu_m \\ \mu_m & =\frac{B_s}{N \mu_o} \\ & =\frac{0.65}{9.14 \times 10^{26} \times 4 \times 3.14 \times 10^{-7}} \\ \mu_{\mathrm{m}} & =5.66 \times 10^{-24} \mathrm{Am}^2 \end{aligned}

Magnetic moment per Bohr magneton

\therefore \mu_{\mathrm{m}}=\frac{5.66 \times 10^{-24}}{9.29 \times 10^{-24}} Bohr magneton

μm = 0.61 μB


5. In a magnetic material the field strength is found to be 106 Am−1. If the magnetic susceptibility of the material is 0.5×10−5. Calculate the intensity of magnetization and flux density in the material.

Given

H = 106 Am-1, χ = 0.5 × 10-5, B = ?, I = ?

Solution:-

(i) I = χH

= 0.5 × 106 × 10-5

I = 5 A m-1

(ii) B = μ0 (I + H)

= 4 × 3.14 × 10-7 (5 + 106)

B = 1.257 Wbm-2


6. The critical temperature of Niobium is 9.15 K. At 0K the critical field is 0.196 T. Calculate the critical field at 5 K.

Given

Tc = 9.15 K, T = 5 K, H0 = 0.196 T, HC = ?

Solution:-

\mathrm{H}_{\mathrm{c}}=\mathrm{H}_0\left(1-\frac{\mathrm{T}^2}{\mathrm{~T}_{\mathrm{c}}^2}\right) \begin{aligned} & =0.196\left[1-\frac{5^2}{9.15^2}\right] \\ & =0.196 \times 0.7014 \\ c_c & =\mathrm{OH} 374 \text { Tesla } \end{aligned}

7. Calculate the critical current through a long thin superconducting wire of radius 0.5 mm. The critical magnetic field is 42.75×103 A/m.

Given

r = 0.5 × 10-3 m, Hc = 42.75 × 103 A/m, Ic = ?

Solution:-

Ic = 2πr Hc

= 2×3.14×0.5×10-3 × 42.75 × 103

Ic = 134.25 Ampere


8. Calculate the critical current for a superconducting wire of lead having a diameter of 1 mm at 4.2K. Critical temperature for lead is 7.18 K and Hc(0) = 6.5 × 104 A/m.

Given

r = 0.5 × 10-3 m, T = 4.2 K, Tc = 7.18 K, H0 = 6.5 × 104 A/m, Ic = ?, Hc = ?

Solution:-

\begin{aligned} \mathrm{H}_c & =\mathrm{H}_{\mathrm{o}}\left(1-\frac{\mathrm{T}^2}{\mathrm{~T}_{\mathrm{C}}^2}\right) \\ & =6.5 \times 10^4\left(1-\frac{4.2^2}{7.18^2}\right) \\ & =6.5 \times 10^4(1-0.3421) \\ \mathrm{H}_{\mathrm{c}} & =42.758 \times 10^3 \text { Tesla } \\ \mathrm{I}_{\mathrm{c}} & =2 \pi \mathrm{r} \mathrm{H}_{\mathrm{c}} \\ & =2 \times 3.14 \times 0.5 \times 10^{-3} \times 42.758 \times 10^3 \\ \mathrm{I}_{\mathrm{c}} & =134.26 \text { Ampere } \end{aligned}

9. A voltage of 5.9×10−6 V is applied across a Josephson junction. What is the frequency of the radiation emitted by the junction?

Given

V = 5.9 × 10-6 V, v=?

Solution:-

\begin{aligned} \mathrm{v} & =\frac{2 \mathrm{eV}}{\mathrm{h}} \\ & =\frac{2 \times 1.6 \times 10^{-19} \times 5.9 \times 10^{-6}}{6.62 \times 10^{-34}} \\ v & =2.851 \times 10^9 \mathrm{~Hz} \end{aligned}

10. Prove that susceptibility of superconductor is -1 and relative permeability is zero.

Solution:-

eqn. 1

We know, the induced magnetic field B = μo (I+H)

In superconductor, B = 0.

Therefore eqn. (1) can be written as

0 = μo (I+H)      eqn. 2

Since, μo #0,

I = -H

We know I/H = χ = -1 eqn. 3

Also,  χ = μr = -1 eqn. 4

Equating eqn. (3) and (4) we get

μr -1 = -1

μr = 1  -1

μr = 0

Substituting eqn. (5) in (4) we get

Santhakumar Raja

Hello The goal of this blog is to keep students informed about developments in the field of education. encourages pupils to improve as writers and readers.

For Feedback - techactive6@gmail.com

Leave a Comment