Bodies in series
Now at steady state,
we have, [latex] \frac{\mathrm{K}_{1} \mathrm{~A}\left(\theta_{1}-\theta\right)}{x_{1}}=\frac{\mathrm{K}_{2} \mathrm{~A}\left(\theta-\theta_{2}\right)}{x_{2}} [/latex]
[latex] \frac{\mathrm{K}_{1} \theta_{1}}{x_{1}}-\frac{\mathrm{K}_{1} \theta}{x_{1}}=\frac{\mathrm{K}_{2} \theta}{x_{2}}-\frac{\mathrm{K}_{2} \theta_{2}}{x_{2}} [/latex]
(i.e.) [latex] \left(\frac{\mathrm{K}_{1}}{x_{1}}+\frac{\mathrm{K}_{2}}{x_{2}}\right) \theta=\left(\frac{\mathrm{K}_{1} \theta_{1}}{x_{1}}+\frac{\mathrm{K}_{2} \theta_{2}}{x_{2}}\right) [/latex]
(i.e.) [latex] \theta=\frac{\frac{\mathrm{K}_{1} \theta_{1}}{x_{1}}+\frac{\mathrm{K}_{2} \theta_{2}}{x_{2}}}{\frac{\mathrm{K}_{1}}{x_{1}}+\frac{\mathrm{K}_{2}}{x_{2}}} [/latex]
(i.e.) [latex] \theta=\frac{\sum \frac{\mathrm{K}_{1} \theta_{1}}{x_{1}}}{\sum \frac{\mathrm{K}_{1}}{x_{1}}} [/latex]
Putting the value of θ in eqn (1) or (2) we can get the quantity of heat flowing through the compound media.
Read More Topics |
De-Broglie’s concept of matter |
Laws for explaining the energy distribution |
Characteristics of De-Broglie waves |